Orifice Plates

All types of Orifice Plates and relative products

Orifice Plates for Raised Face Flanges

Series OPRFF

✓ Principle

OPRFF orifice plates are used as primary elements in flow measurement of liquid, gas and steam according to the differential pressure principle.

✓ Construction

Design and Calculation Standards:

ISO 5167, ASME MFC-3M, ASME MFC-14M, ISA RP 3.2,

Shell Flow Meter Engineering Handbook

R. W. Miller Handbook, AGA report no. 3

Sizes : 1" - 24" according to ANSI B 16.36 Flanges,

50 < D < 1000 mm according to ISO 5167 and 50 < D < 900 mm,

According to ASME MFC-3M

Pressure rating : 300 - 2500 lbs. RF (150# is not recommended by standards)

Also, Ring Type Joint (RTJ) and Flat Face (FF) are available, too.

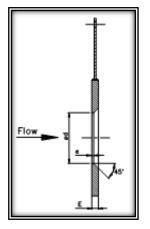
Either API Flanges for higher pressure rating can be selected.

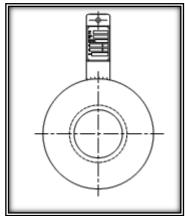
Plate thickness : 3 - 16 mm depending on plate size and pressure

Bore (d) : d > 12.5 mm (based on Standard)

 β (d/D) : 0.2 < β < 0.75

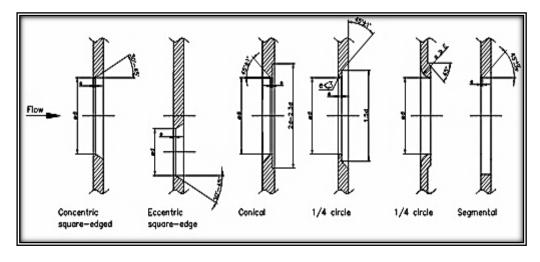
Material : Stainless Steel (Especially AISI 316), Carbon Steel, Monel, Inconel,


Super Duplex, 6Mo and others on request.



Vent or drain Hole: On request; ISO, API, ASME and IPS provide especial tables for weep holes.

Typical Draft



Mounting style : Between raised face flanges according To ANSI B16.36 or DIN 19214,

Or other standards on request.

Orifice Plate Shapes: Square edge concentric, square edge, Eccentric, Concentric,

conical, Quarter circle (or 1/4 Circle), segment.

Handle : With name plate in AISI 316 with the following inscription:

TAG no., serial no., pressure rating, inner pipe diameter,

bore size, material and <u>UPSTREAM</u> mark.

www.controlpuyesh.com info@controlpuyesh.com Tel/Fax: (98)21-44531109 Catalog Serial No.: GP2013rev04

NOTE : For Restriction Applications, please see the OPRES catalog.

✓ Technical Data

Accuracy : $\pm 0.6 \%$ for $\beta < 0.6$ and equal to β for

β values above 0.6

Permanent Pressure lost

: Depending on $\beta,$ for β equal to 0.6 then approximately 60 %

of the measured differential pressure.

Limits for Reynolds No. in pipe:

Re > $\underline{1260 \times \beta^2 \times D}$ according to ISO 5167,

 $2000 < Re < 10^8$ according to ASME MFC-3M

Especial Application and Options are available:

- Pipe in mounted Orifice Plates
- Integrated Orifice Assemblies
- PRG, Polymer or Transparent Material for construction

Some Samples of Orifice Plate:

www.controlpuyesh.com info@controlpuyesh.com Tel/Fax: (98)21-44531109 Catalog Serial No.: GP2013rev04

Brief comparison between flow measuring devices

Device	Rangeability ¹	Accuracy ²	Advantages	Disadvantages
Orifice	3.5:1	2-4% of full span	-low cost	-high pressure loss
			-extensive industrial practice	-plugging with slurries
Venturi	3.5:1	1% of full span	-lower pressure loss than orifice	-high cost
			-slurries do not plug	-long length
Flow nozzle	3.5:1	20/ full anan	-good for slurry service	-higher cost than orifice plate
Flow Hozzie	5.5:1	2% full span	-intermediate pressure loss	-limited pipe sizes
Elbow meter	3:1	5-10% of full span	-low pressure loss	-very poor accuracy
Annubar	3:1	0.5-1.5% of full	-low pressure loss	-poor performance with dirty or sticky
Amiubui	3.1	span	-large pipe diameters	fluids
Turbine	20:1	0.25% of measurement	-wide range ability	-very expensive
			-good accuracy	-strainer needed, especially for slurries
Positive displacement	10:1 or greater	0.5% of measurement	-high range ability	-high pressure drop
			-good accuracy	-damaged by flow surge or solids

Notes:

- 1. Range ability is the ratio of full span to smallest flow that can be measured with sufficient accuracy.
- 2. Accuracy applies to a calibrated instrument.

مندی کتر پی مردس